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for the rcc-based Ni—Fe and Ni—-Al systems
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t I'N Frantsevich Institute of Material Research Problems, Krzhizhanovskogo 3, Kiev
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Received 31 December 1990

Abstract. We discuss microscopic expressions for the configurational potentials V, in alloys
using the K¥Rr formalism and cluster-cumulant expansions. We note that V, must depend not
only on the concentrations but also on the long-range order parameters 7, in the alloy. The
analysis of the experimental data on the short-range order, phase diagrams and thermo-
dynamics of the Fc¢-based Ni-Fe and Ni~Al systems appears to show that in the Ni . Fe,
alloysthe dependence of V, onboth x and n, is weak, while inthe Ni, _,Al, ones the variations
of V, with x and (or) ordering are significant.

To describe statistical properties of alloys, such as their ordering, decay, short-range
order (srRO) effects etc, the use of Ising-like Hamiltonians is generally accepted, these
being of the form (see e.g. [1-5])

H=NVy+ 2 VIN, + 2 ViE#nng + 2“ VB gt + . (1)
ior i< i<f<k
o7 afly

Here N, is the number of atoms of the & species, N = £, N, is the total number of atoms,
the operator #,, is unity when the site i is occupied by an a-species atom and n;, = 0
otherwise, and the coefficients Vi--# will be called the configurational potentials. In
the substitutional alloys to be discussed below the operators n;, at each i are bounded
by the condition Z,n;, = 1, thus in the binary alloy A-B the Hamiltonian (1) can be
expressed, for example, in terms of the #,, operators only.

In the original phenomenological approaches the potentials V,, in (1) were supposed
to be constants independent of both the concentrations ¢, = N,/N and the state of order
in the alloy [1]. However, the microscopic estimates based on the coherent potential
approximation (CPA) for the electronic structure of disordered alloys showed that the
V, values can vary significantly with the concentration [2-4]. The analysis of the srRo
data for the alloys Ni,Cu,_, [6], as well as the calculations of [7], confirmed these
estimates, revealing sharp variations of V,, with x in these alloys (which is connected with
the fact that the Fermi level e approaches the peak in the density of electronic states,
N(g), when x increases). However, the possible changes of V, under the ordering of the
alloy were apparently not discussed in the literature. In particular, in estimates of the
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energy differences between different phases [4, 5] the V, values in the ordered and
disordered phases were always supposed to be the same.

In this letter we note firstly that the potentials V, in (1) must, generally, vary with
ordering, and the variations can be not small if the corresponding changes of electronic
structure are significant, Secondly, we present estimates of V,, from the experimental
data for the Fcc-based Ni-Fe and Ni-Al alloys, which, as they seem to be interesting
themselves, may also illustrate the above considerations,

In the theoretical discussion we consider only the ‘electronic’ contribution to V¥
(that connected with the local lattice distortions is usually believed to be small for the
substitutionat alloys) and use the conventional approximations of the density functional
theory {DFT) and the muffin-tin (MT) form for the electronic crystalline potential. Then
the expression for the thermodynamic potential of electrons, Q(u) = E — uN,, cor-
responding to their ground state at the given set {#,,} of the occupation numbers in the
KKR formalism has the form [8, 4]

H Z,Z
Q-Qu(u) = -!\-};Im Trf delnt + U{p,} + > -ﬁn;an}ﬂ (24)
- i

i<jaf

-1
7= (2 min, — g) . (2b)
I

Here Qq(u) is the free-electron value of Q; mi = (#1) " is the inverse of the scattering
matrix at the site / occupied by the atom of species o; (#,)5%" = 6,258 (€), where L
denotes the angular momentum variables; and g is the KKR structural constant matrix,
The term U® describes the *double counted’ terms of the electron—electron interaction;
it is a functional of the electronic density in the MT cells, p(r), which is related to the
operator t (2b) as [8]

1 K
Pia(r) == Elmf de 2 ZE(NZE (el (3)
—x Ly

where Z{#(r) is the wave function in the MT potential V,,(r) [8]. The last term in (24)
corresponds to the Coulomb repulsion of ions, R, = {R, — R;| being the intersite distance.

The expression (2a) can serve as a basis for the derivation of the configurational
Hamiltonian (1) [2-4];, we can obtain microscopic expressions for V- #  eguating
coefficients at n;, . . . ,5in equations (1) and (22). For a system having a finite number
of sites, such a definition would be unique. However, in the macroscopic system the
expansion (1) is necessarily truncated after several terms with the smallest values of n
and R;. Then the adequacy of using such a truncated Hamiltonian H, to calculate the
statistical properties is determined by the extent to which the results of the operation of
H, and the total & (1) on the configurations {rn;}, making the main contribution to
the statistical sum Z = X exp(~ H/T), are similar. In practice, expressions for H, are
obtained with the use of various versions of the ‘effective medium’ approximation (CpA,
the embedded cluster method (EcM) {3, 6], the cluster field approximation [9], etc).
They correspond to regrouping terms and partial averaging in equation (2a) aiming to
reduce it to the form (1) with the coefficients Vi## decreasing as rapidly as possible
with an increase of n or R;. Hence, the V, values must be determined self-consistently,
depending, therefore, on both the concentrations and on the state of order of the alloy.

The cluster-cumulant expansions [10], analogous to those used in the statistical
theory of alloys [11, 12], may provide a natural basis for the construction of various
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approximations for calculating V,. They correspond to introducing variational par-
ameters into equations (2) which describe the effect of the surroundings on the n-site
cluster under consideration. We shall consider them, using as an example the ‘single-
site” approximations, such as the CPa or EcM (though the many-site approaches are also
possible [9]).

In the disordered alloy, each m, in (2) is written as a sum of the site-independent
term m, and the deviation from it, A, = m!, — m

mb, = m + AL me=me(€)8;6,,.. 4)
Then we write In 7 in (24) as a cumulant expansion:

Int=Inty + > Hio ln QF + > Ry rg(In Qis — In Qf — In Q)

ia i<jab

+ X gnng(n O, —~1n Qi ~n QF ~1n Q%

i<j<k. aBy
+InQi+InQs+m Q8 +. .. &)

where T, = (m_— g)~! and Q% * =1+ (AL + Al + ... Af)r.]™". The analogous
expansion can also be written for 7 in (2b):

SEAIEOPRCENE S manp(ly = Q= Qp +D+ . ] ©)
i<

Inserting equations (5) and (6) in equation (2a) yields expansion (1). Hence, the
term with the product of n operators n,, . . . njg corresponds to the contribution to H of
the electron scattering at » different sites in the effective medium. If the operator 7,
describes the ‘averaged’ motion of electrons adequately, one may expect that these
n-site contributions decrease sufficiently rapidly with the increase of n or Ry, so
the convergence of expansion (1) for the significant configurations {n;} is acceptable.

If ali the terms of series (3) and (6) are taken into account, the € value in (2) does
not depend on m,, thus §Q/8m, = 0. However, such a dependence is present for the
‘truncated’ Q = €, corresponding to a finite number of terms in the expansion. One
may expect that the error is minimal if we choose m, to obey the condition 8Q,/ém, =
0; this corresponds to variational formulations of the single-site approximations [13]. In
varying the expression (2a) over m,, the values of p(r) and m?,(p) can be kept constant
since in the DFT used the functional Q(p) obeys the variational equation 8Q2/8p(r) =
Thus we can only vary t.and Af, over m(g) in the first, ‘band’ term of (5). Then allowing
for only two first, single-site terms in equations (5) and (6) yields the cPa equations for
mg:

2 ALl + AT = N2, A (L + TPA ) =0 0)
x &

Here we took into account the ‘self-averaging’ of the sum over all the sites { in equation
(7) and also the independence of 7, and A%, on the site number { used in the single-site
approximation,

To find the configurational potentials V, we must take into account the n-site cumu-
lants with # = 2 in equations (5) and (6). Hence, m, must be determined, generally

1 This point was indicated to us by N E Zein,
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speaking, from the same variational equation 5Q/m, = 0, including these n-site con-
tributions to €, while in the previous calculations of V,, [2—4, 7] the m, values were found
from the CPA single-site equation (7). However, if the many-site terms are supposed to
be smaller than the single-site ones by some parameter &, then the contribution to &
from the correction m, — (m)cpa has the order 87 and neglecting it is justified.

In the ordered alloy the lattice sites i are divided into several non-equivalent sub-
lattices £, with the different concentrations {#,(i))} = cA. Thus, to adequately describe
the electronic structure, the single-site CPA parameters m.(i;) = m{ for different
sublattices must be different [14] and can be found from the set of cquations
8Q/6m? = 0. Therefore, the averaged quantities (Al)= A? and ¥ = 1%+ in the
equations generalizing (7) depend on the type 4 of the sub-latice. It is clear from
equations (2)-(7) that the potentials Vi¥# =V, (i;e,...,B) in (1) for different
sublattices &, ... u are different too. In addition, all these potentials, including the
‘configuration-independent’ terms ¥ and V,, in (1}, depend on all the ¢}, and in particu-
lar, on the order parameters n, in the alloy.

The previous treatments [2-5] did not consider the changes of V, with ordering,
supposing V,(n,) = V(0). This is evidently reasonable if the changes of the electronic
structure under the ordering are small (for example, when the constituents of the alloy
have similar bandstructures). If, however, these changes are significant (as, for example,
in the FeTi alloy [14]) then the V, values must, generally, change noticeably under the
ordering,

Experimentally, the V,, values can be estimated (in that or another approximation)
from the phase diagram and thermodynamic data [15, 16] or, more directly, from the
srRO studies [6, 11]. Below we present such estimates for the Fcc-based Ni-Fe and Ni-
Al alloys. Hence, 1o calculate statistical properties using the Hamiltonian {1), we used
the cluster field method (cFv) described earlier [11. 12]. This is a simplified version of
the known cluster variation method (cvMm) [1] which is also convenient for considering
the long-range interactions. Detailed analysis [11, 12] has shown that for the V, values
characteristic of the considered alloys, the accuracy of the employed versions of the CFM
is rather high and, apparently, exceeds that of the experimental data used.

Estimates of V, in the Fcc alloys Ni, _ Fe, were discussed in detail in papers [6] and
[12]; here we summarize the results. The sRO was studied in the disordered Al phase
with the diffuse scattering of neutrons at x = 0.235 [17] and x = 0.698 [18]. Since only
pair correlation parameters are determined with this method. one must make some
assumptions about the non-pair, many-site termsin (1). The assumption of pure pairwise
interactions, V>3 = 0, results in very sharp concentration dependencies of the poten-
tials V5 (see table 1) and in disagreement with the observed phase diagram (x, 7) in the
region x = 0.25 [6, 12]. At the same time, the presence of the three-site interaction of
nearest neighbours Vi° = (200-250) K leads to much less variation of V5 between x =
0.235 and x = 0.698. Figure 1 shows the phase diagrams calculated with these Vs
assuming both ¥, and V5 to be concentration independent. The satisfactory agreement
with experiment, seen in this figure, can be considered as a substantiation of the assump-
tions about weak variations of the V, in Ni, _ Fe, with both x and orderings.

Note also that the ordering of the alloy results in the appearance of additional gaps
or pseudogaps in the electron energy spectrum which usually correspond to some gain
in the band energy. This gain, disregarded in the employed model, must enhance the
transition temperatures T,(x), i.e. improve the agreement with experimental findings
shown in figure 1. If one ascribes underestimating the calculated T.(x) in figure 1 to this
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Table 1. Pairwise configurational potentials V3, + Vi — 2Viz = V,(R;) (in K) in the
disordered roc alloys Ni, . Fe, and Ni;_,Al, as estimated from the sro data [17, 18, 20] at
various values of the three-site nearest-neighbour potential V§,

2R,/a

Alloy X T(K) Vi"(X) 110 200 211 220 310 222 321 400 330 411
Ni-Fe 0235 780 0 663 -—238 42 27 =22 -19 15 =9 g8 -8
[17) -200 767 -229 44 29 -2 -19 15 -9 8 -8
-250 797 =225 45 9 -22 -19 15 -9 § -8

Ni-Fe = 0.698 743 0 65 -146 =18 6 -7 -4 — — — —

[18] —200 651 -145 —I8 60 -7 -4 — — —

=250 795 -147 -I8 0 -7 -14 — - — —
Ni-Al  0.073 673 0 1188 -—258 8 -186 ~73 131 80 42 -11 -10
[19] 0.105 673 0 1300 -249 -121 -25t -35 61 38 105 -21 10
823 0 1341 -294 -1090 -256 -—12 48 41 116 -26 -34

800¢

6001

400 F

7 K]

200F

0 0.2 0.4 OI,6
X

Figure 1. Phase diagram of the rcc alloys Ni, ., Fe,. Broken curve: results of Rossiter and
Tago [29], full curve: calculated using ¥, from the second line of table 1, chain curve:
calculated using V, from the third line of table 1.

effect only, then the changes of V, in Ni, _,Fe, under the L1,- and L1g-type orderings
are estimated to be off by about 10-20%.

Therefore, the variations of V,, in the Fcc ailoys Ni, .. ,Fe, with both x and orderings
are apparently not large, which may reflect the similarity of the electronic structure of
the constituents. The presence of noticeable three-site interactions can be connected
with the itinerant magnetism of these alloys, i.e. with some non-pair collective effects.

In estimating V, for the Foc Ni—Al system we used the so-called ‘5’ version of the
crM. Itexceedsin accuracy the ‘6’ version described earlier [11] taking into consideration
all the five-site clusters in which any two sites are connected with at least one chain of
nearest neighbours. For the model of the A,B alloy with pair interaction of nearest
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neighboursonly, V3" = V, the temperature of the L1 ,~type ordering within the S approxi-
mationis T, = 0.41, V., while the Monte Carlo calculations {19] yield: T, =~ 0.45 V. When
the ratio T/V grows, the accuracy of the cFM rapidly increases [11, 12], thus for the Ni-
Al alloys, where T,/V > 1, it must be sufficiently high.

Estimates of V,, from the sro data [20] for the disordered y phase of the Ni-Al alloys
are presented in table 1. The potentials V, were supposed to be pairwise (in accordance
with the available estimates for non-magnetic alloys [2, 3]) and we assumed only ten
V3, with the smallest R, values, to be non-zero. If we assume only five V3 # 0, then, for
example, in the eighth line of table 1 we obtain Vj = (1466, =221, ~121, -235, —58) K,
which is close to the results of the inverse Monte Carlo method [20] for the model with
four V¥ =+ 0: V1 = (1439, =216, =137, —253, 0) K. This confirms the high accuracy of
the 5 approximation in the problem under consideration.

The main interactions V7 for Ni,_ ,Al, in table 1 are almost constant with T; this may
indicate {6, 11] the adequate accuracy of the SRO data used [20], in spite of the difficulties
in subtracting the background as discussed by the authors. Variations of V, with x
between x = 0.073 and x = 0.105 do not seem to be significant and may lie within
experimental error.

In describing thermodynamics, we proceed from the expression for the free energy
F (per atom of alloy) that neglects all the anharmonic effects {21]

F=Fy(x) + Foulx, T) + Folx, T). {8)
Here the configuration-independent term F; corresponds to terms with Vyand V,in (1),
Feont is the configurational contribution to F, and F,, the phonon contribution. To
estimate the concentrational dependence of £, we employ the Debye model and data
[22] on elastic constants C;; in Ni; _,Al,, which reveal very small changes of C; between
pure Ni {(x =0) and the L1,-ordered y' phase NizAl (x = 0.25). If we assume the x
dependence of the Debye temperature @ in this interval to be linear, then data [22] yield
B(x) = 459(1 + 0.072x) K. This corresponds to negligibly smalk variations of F, with x
in both the y and y' phases.

The function F;(x) was interpolated by a polynomial [16]

AFY(x) = F§(x) — Fo(0) = fax’ + bx. (9)
Values of a and b in the ¥ phase were estimated from the thermodynamical data [23]
using F.i{x, T) calculated with V, from the eighth line of table 1 (assuming that they
do not change with x). Thisgave a = 39173 Kand & = —17483 K. This estimate implies,
in particular, that the x dependence of F is mainly determined by the F, term. For
example, at x = 0.19, T = 1633 K we have g = 8F;/dx = —9962 K and feons = 8 Fons/
dx =944 K.

If we now assume that the estimated V,,, @ and b values in Ni,_,Al, at x <0.25 do
not change with either x or ordering, then the calculated phase diagram y-y’ disagrees
significantly with the observed one, see figure 2. This may correlate with the noticeable
changes of electronic structure in these alloys: according to calculation [24], the form of
N(¢g) in the vicinity of the Fermi level in Ni;Al differs significantly from that for pure Ni
(see, e.g. [25]) which may result in considerable changesin V, [6, 7.

To obtain an idea of the scale of these changes, we made illustrative estimates using
only the phase diagram and long-range order data for the ¥’ phase [26-28]. Let us assume
that the AF, term in this phase has the form not of equation (9), but

AF4(x, n) = F4(x, n) — F(0,0) = }4x* + Bx + C + Dxn. (10)
Here 7 is the order parameter related to the Al concentrations ¢’ in sublattices # and
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1800

1400

T{K)

1000 Figure 2. Phase diagram of the rcc alloys

Niy-,Al,. Broken curve: experimental results
from [26] and [27], chain curve: calculated using
AF,fromequation (9) and V, from the eighth line
of table I for both the ¥ and y' phases, full curve:
calculated using AF; and V, for the v’ phase
changed as described in the text.

60

b, occupied predominantly by Ni and Al atoms, as ¢%; = x(1 — 1) and ¢4, = x(1 +3n).
Equation (10) may be considered as an expansion of AF,; in powers of the parameter
1 — nwhichis smallin the y' phase [28]. Furthermore, V7 for the not-nearest neighbours
are supposed to be the same as in eighth line of table 1, while those for the nearest
neighbours were chosen to be V*¥ = 2500 K and V% = 1000 K. Then the D value in (10)
was fitted to the observed 5 = 0.7 atx = 0.24, T = 1633 K [28]; afterwards A, Band C
were fitted to the phase diagram data [26, 27]. This gave (in K), A =71322, B=
—29618, C = 1750 and D = —213. Thus, the form of AF4(x, ) in the ¥’ phase differs
noticeably from that in the v phase.

The resulting phase diagram is shown in figure 2. Note that the choice of V** in the
model used is restricted (V% is less important due to smallness of 1 — 5): at V4 = 3000
the 7 value always exceeds the observed n = 0.7, while at V°* = 2000 coefficients in
equations (9) and (10) differ too strongly. For example, at V% = 2000 we obtain:
A = 113000.

Let us comment on other estimates of V,, in Ni,_ _Al,. Sigli and Sanchez considered
only one potential, V = 3890 K, and the same AF,; in both the y and v’ phases, but their
model does not describe the sRO data [20]. Cenedese et al [29] estimated V; from the
data [20] using a combination of the cvM and Bragg-Williams method. However, they
did not consider the thermodynamic data {23] and the AF,; term; in addition, their
calculated phase diagram disagrees with the observed one in a number of significant
details.

Thus, the configurational potentials in the Ni, _ ,Al, alloys appear to vary noticeably
with x and/or the ordering, which may be connected with the aforementioned significant
changes of the band structure. Since, however, this conclusion is based mainly on the
analysis of the sro data [20], the further SRO measurements for Ni; _ Al andin particular
those at larger x, x > 0.1 and those obtained using the neutron scattering methods [6],
seem to be highly desirable.

The authors are much indebted to N E Zein and S V Beiden for numerous discussions,
as well as to Dr P Cenedese for valuable information about details of his work [19] and
[28].
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